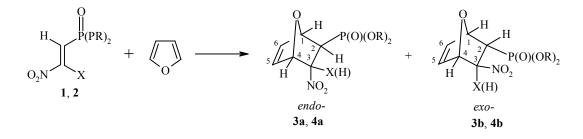
REACTION OF β-NITRO-AND β-HALO-β-NITROETHENYL-PHOSPHONATES WITH FURAN


A. A. Kuzhaeva², N. A. Anisimova², L. I. Deiko¹, G. A. Berkova¹, and V. M. Berestovitskaya¹

Keywords: nitroethenylphosphonates, phosphorylated nitro oxabicycloheptenes, furan, diene synthesis.

Conjugated nitroalkenes are active dienophiles in the Diels–Alder reaction and are widely used to construct fragments of natural compounds and biologically active substances [1-3].

There is increased interest in the behavior in these reactions of β -nitroethenylphosphonates, the molecules of which simultaneously have two strong vicinal electron acceptors (the nitro and the phosphoryl functional groups), because of their high reactivity [4, 5] and the possibility of using them to synthesize novel functionalized carbobicyclic and heterobicyclic structures, including oxygen-containing structures.

We have studied for the first time the reaction of bis(2-chloroethyl)- β -nitroethenylphosphonates 1, 2 with furan. We found that the reaction occurs under very mild conditions (~20°C, in benzene) for a 1:2 ratio of nitroalkene:furan, and ends in formation of phosphorylated nitro oxabicycloheptenes 3, 4. Compounds 3, 4 were isolated using column chromatography (silica gel Chemapol 100/200, eluents chloroform, ether) as oils which were a mixture of the *endo* and *exo* stereoisomers 3a,b, 4a,b in the ratio 3a:3b = 3:2 and 4a:4b = 3:1.

1-4 R = CH₂CH₂Cl; **1**, **3a**,**b** X = H, **2**, **4a**,**b** X = Br

The composition of compounds **3**, **4** was confirmed by elemental analysis; the structure was established by IR and ¹H, ³¹P NMR spectroscopy: the configurations and the *endo/exo* isomer ratio were determined based on comparing the spin–spin coupling constants (J_{PH} , J_{HH}) and the integrated intensities, and also by drawing on the similar 3-nitro-4-phenylsulfonyl-5-oxabicyclo[2.2.1]-5-heptenes with known configurations as the model structures [6].

1109

¹ A. I. Herzen Russian State Pedagogical University, St. Petersburg 191186, Russia; e-mail: chemis@herzen.spb.ru. ² Gorno-Altaisk State University, Gorno-Altaisk 649700, Altai Republic, Russia; e-mail: zoot@gasu.gornu.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1264-1266, August, 2003. Original article submitted December 9, 2002.

The IR spectra were obtained on an InfraLYUM FT-02 spectrometer (in CHCl₃, *c* 0.1-0.001 mol). The ¹H and ³¹P NMR spectra (in CDCl₃) were recorded on a Bruker AC-200 (200 MHz); for the ³¹P spectra, we used 85% phosphoric acid as the external standard. The R_f values were determined on Silufol UV-254 plates in a 3:2 hexane–acetone solvent mixture; the chromatograms were visualized in UV light.

The starting 2-nitro- and 2-bromo-2-nitroethenylphosphonates 1, 2 were synthesized by the familiar procedures in [7, 8].

Bis(2-chloroethyl)-3-nitro-7-oxabicyclo[2.2.1]-5-hepten-2-ylphosphonate (3). Yield 60% (oily substance), R_f 0.1. IR spectrum, v, cm⁻¹: 1620 (C=C), 1561, 1367 (NO₂), 1253 (P=O), 1085, 1030 (P–O–C). Isomer **3a**, *endo*-NO₂. ¹H NMR spectrum, δ , ppm (*J*, Hz): 5.38 (1H, dd, ³*J*_{HP} = 15, *J*_{1,6} = 1.8, H₍₁₎); 5.34 (1H, ddd, ³*J*_{HP} = 5.8, *J*_{2,3} = 4.0, *J*_{3,4} = 5.2, H₍₃₎); 5.40 (1H, dd, *J*_{3,4} = 5.2, *J*_{4,5} = 1.5, H₍₄₎); 6.50 (1H, dd, *J*_{5,6} = 5.2, *J*_{5,4} = 1.5, H₍₅₎); 6.32 (1H, dd, *J*_{5,6} = 5.2, *J*_{1,6} = 1.8, H₍₆₎); 4.38 (5H, m, 2 OCH₂ and H₍₂₎); 3.73 (4H, m, 2 CH₂Cl). ³¹P NMR spectrum, δ , ppm: 23.5. *exo*-Isomer **3b**. ¹H NMR spectrum, δ , ppm (*J*, Hz): 5.35 (1H, ddd, ³*J*_{HP} = 15, *J*_{1,2} = 3.5, *J*_{1,6} = 1.7, H₍₁₎); 4.75 (1H, ddd, ²*J*_{HP} = 10.5, *J*_{2,3} = 3.6, *J*_{1,2} = 3.5, H₍₂₎); 4.70 (1H, ddd, ³*J*_{HP} = 4.0, *J*_{2,3} = 3.6, *J*_{3,4} = 2.5, H₍₃₎); 5.54 (1H, dd, *J*_{3,4} = 2.5, *H*₄); 6.75 (1H, dd, *J*_{5,6} = 5.8, *J*_{5,4} = 1.5, H₍₅₎); 6.68 (1H, dd, *J*_{5,6} = 5.8, *J*_{6,1} = 1.7, H₍₆₎); 4.38 (4H, m, 2 OCH₂); 3.73 (4H, m, 2 CH₂Cl). ³¹P NMR spectrum, ppm: 25.5. Found, %: C 34.52, 34.50; H 4.09, 4.10; N 4.14, 4.15; P 8.94, 8.94. C₁₀H₁₄Cl₂NO₅P. Calculated, %: C 34.68; H 4.05; N 4.05; P 8.96.

Bis(2-chloroethyl)-3-bromo-3-nitro-7-oxabicyclo[2.2.1]-5-hepten-2-ylphosphonate (4). Yield 80%, R_f 0.23. IR spectrum, v, cm⁻¹: 1616 (C=C), 1568, 1367 (NO₂), 1260 (P=O), 1084, 1030 (P–O–C). Isomer **4a**, *endo*-NO₂. ¹H NMR spectrum, δ , ppm (*J*, Hz): 5.85 (1H, ddd, ³*J*_{PH} = 16.8, *J*_{1,2} = 2.5, *J*_{1,6} = 2.5, H₍₁₎); 4.68 (4H, dd, ²*J*_{HP} = 13.0, *J*_{1,2} = 2.5, H₍₂₎); 6.45 (1H, d, *J*_{4,5} = 2.5, H₍₄₎); 7.14 (1H, dd, *J*_{5,6} = 5.7, *J*_{5,4} = 2.5, H₍₅₎); 7.03 (1H, dd, *J*_{5,6} = 5.7, *J*_{6,1} = 2.5, H₍₆₎); 4.45 (4H, m, 2 OCH₂); 3.72 (4H, m, 2 CH₂Cl). ³¹P NMR spectrum, δ , ppm: 16.5. *exo*-Isomer **4b**. ¹H NMR spectrum, δ , ppm: 5.93 (1H, ddd, ³*J*_{HP} = 18.0, *J*_{1,2} = 2.0, *J*_{1,6} = 2.5, H₍₁₎); 5.30 (1H, d, ²*J*_{HP} = 15.0, *J*_{1,2} = 2.0, H₍₂₎); 6.50 (1H, d, *J*_{4,5} = 2.5, H₍₄₎); 7.14 (1H, dd, *J*_{5,6} = 5.7, *J*_{5,4} = 2.5, H₍₅₎); 7.03 (1H, dd, ³*J*_{HP} = 15.0, *J*_{1,2} = 2.0, H₍₂₎); 6.50 (1H, d, *J*_{4,5} = 2.5, H₍₄₎); 7.14 (1H, dd, *J*_{5,6} = 5.7, *J*_{5,4} = 2.5, H₍₅₎); 7.03 (1H, dd, *J*_{5,6} = 5.7, *J*_{1,6} = 2.5, H₍₆₎); 4.45 (4H, m, 2 OCH₂); 3.72 (4H, m, 2 CH₂Cl). ³¹P NMR spectrum, δ , ppm: 18.5. Found, %: C 28.18, 28.20; H 3.15, 3.20; N 3.28, 3.29; P 7.32, 7.30. C₁₀H₁₃BrCl₂NO₆P. Calculated, %: C 28.30; H 3.07; N 3.30; P 7.31.

REFERENCES

- 1. V. V. Perekalin, E. S. Lipina, V. M. Berestovitskaya, and D. A. Efremov, *Nitroalkenes (Conjugated Nitro Compounds)*, Wiley, London (1994), p. 131.
- 2. H. Feuer (editor), *The Chemistry of Nitro and Nitroso Groups* [Russian translation], Mir, Moscow (1973), Vol. 2, p. 117.
- 3. N. Ono, *The Nitro Group in Organic Synthesis*, Wiley-VCH, New York (2001), p. 231.
- 4. G. M. Baranov and V. V. Perekalin, Usp. Khim., 61, 2215 (1991).
- 5. V. M. Berestovitskaya, L. I. Deyko, J. E. Botata, and V. V. Perekalin, *Phosphorus, Sulfur and Silicon*, **111**, 754/122 (1996).
- 6. N. Ono, A. Kamimura, and L. Kaji, J. Org. Chem., 53, 251 (1988).
- 7. Zh. E. Botata, L. I. Deiko, T. K. Kostina, G. M. Baranov, and V. M. Berestovitskaya, *Zh. Obshch. Khim.*, **65**, 160 (1995).
- 8. G. M. Baranov and V. V. Perekalin, Zh. Obshch. Khim., 57, 793 (1987).